|
ACM Siggraph Asia, 2021, Proceedings
Cascaded Sobol' Sampling
Cascaded Sobol' Point Sets. For quasi-Monte Carlo integration problems, low discrepancy samplers, such as the Sobol' sequence with Owen scrambling [Owen 1998; Sobol' 1967], are widely used thanks to their ease of generating high-dimensional point sets. While being low discrepancy in high dimension, some projections may exhibit strong uniformity defects (illustrated here by consecutive 2-dimensional projections of an 11-dimensional point set in the first row). We propose a sampling strategy with perfect (0,m,2)−net properties (second row) for consecutive pairs of dimensions and optimized low discrepancy in high dimension, reducing errors in Monte Carlo rendering. The third row shows L2-discrepancies of first 10 consecutive 2-dimensional projections; (see paper Figure 7 for s-dimensional discrepancies).
Abstract
Rendering quality is largely influenced by the samplers
used in Monte Carlo integration. Important factors include sample
uniformity (e.g., low discrepancy) in the high-dimensional integration
domain, sample uniformity in lower-dimensional projections, and lack
of dominant structures that could result in aliasing artifacts. A
widely used and successful construction is the Sobol' sequence that
guarantees good high-dimensional uniformity and consequently results
in faster convergence of quasi-Monte Carlo integration. We show that
this sequence exhibits low uniformity and dominant structures in
low-dimensional projections. These structures impair quality in the
context of rendering, as they precisely occur in the 2-dimensional
projections used for sampling light sources, reflectance functions, or
the camera lens or sensor. We propose a new cascaded construction,
which, despite dropping the sequential aspect of Sobol' samples,
produces point sets exhibiting provably perfect dyadic partitioning
(and therefore, excellent uniformity) in consecutive 2-dimensional
projections, while preserving good high-dimensional uniformity. By
optimizing the initialization parameters and performing Owen
scrambling at finer levels of binary representations, we further
improve over Sobol's integration convergence rate. Our method does
not incur any overhead as compared to the generation of the Sobol'
sequence, is compatible with Owen scrambling and can be used in
rendering applications.
Bibtex
@Article{Cascaded2021,
author = {Loïs Paulin and David Coeurjolly and Jean-Claude Iehl and Nicolas Bonneel and Alexander Keller and Victor Ostromoukhov},
title = {Cascaded Sobol Sampling},
journal = {ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia);},
year = 2021,
month = dec,
volume = 40,
number = 6,
pages = {274:1–274:13}
Downloads
|
|